Reduction of extra articular fracture

Jeppe Barckman Aarhus University Hospital

Goal

• Describe fracture displacement!

Understand displacing forces

Reduction technic
Direct or indirect

Fraktur displasment

Ant/post/medial/lat Axial valgus/ Anteve displasment shortening varus retrove

Anteversion rotation retroversion

 Restoring the correct position of the fracture fragments

Analyses of displacement and displacing forces...

Analyses of displacement and displacing forces...

Displacing forces

 Analyses of displacement and displacing forces...

...help us to plan the reduction steps

Displacing forces

Goal of metaphyseal/diaphyseal fracture reduction

Restore

- Length
- Axial alignment
- Rotation

Goal of metaphyseal/diaphyseal fracture reduction

Restore

- Length
- Axial alignment
- Rotation

Goal of metaphyseal/diaphyseal fracture reduction

Restoring length, rotation and axial alignment

Obtaining correct mechanical axis

Who to reduce metaphyseal/diaphyseal fracture

Direct reduction

Indirect reduction

Who to reduce metaphyseal/diaphyseal fracture

Direct reduction

• The fracture site is exposed.

Risk of devascularisation of fragments

Direct reduction?

- The fracture site is exposed.
- Risk of devascularisation

Delayed union / Non union / Implant failure / Infection

Indirect reduction

Indirect reduction

Indirect reduction

Indirect reduction

- The fracture site is NOT exposed.
- soft tissue protecting

Tools for reduction

- Traction
- Reduction using instruments
- Reduction using the implant

Tools for reduction Traction

The "Joy-stick"

Pointed reduction forceps

Collinear reduction clamp

Collinear reduction clamp

"Poller-skrue"

"Poller-skrue"

"Poller-skrue"

Evaluating reduction

Clinically

 Always check distal pulse

Evaluating reduction

- Clinically
- X-ray

Evaluating reduction

Goal of metaphyseal/diaphyseal fracture reduction

Restoring length, rotation and axial alignment

Obtaining correct mechanical axis

Direct reduction

The fracture site is exposed.

Risk of devascularisation of fragments

Indirect reduction

- The fracture site is NOT exposed.
- soft tissue protecting

d

Indirect reduction

Thank you

- The fracture site is NOT exposed.
- soft tissue protecting

d

