

Locking plates – use and abuse

AOTrauma Course—Advanced Principles of Fracture Management April 25–28, 2022 Fredericia, Denmark

Aims

Understanding of:

- How do we use LCPs
 - -(1.) compressing
 - (2.) buttressing
 - (3.) bridging
 - -(4.) combination in osteoporotic fractures
- Advantages of anatomical preformed LCPs
- Differences between internal and external fixators

Not all Locking Compression Plates are equal...

Principles:

- (1.) Absolute stability
- (2.) Buttress
- (3.) Internal fixator
- (4.) Anatomically adapted to region of interest
 → opportunity to fix joint surface AND metaphysis

(2.) Buttress – and how it's done

- Protection of an absolute stable construction
- Direct fracture healing

Simple fractures need absolute stability.

Use: Complex fracture of the distal humerus shaft:

Arterial lesion, separate wedge: first simplified, then fixed with dynamic compression

When using universal plates, mind dimensions

- The right dimensions
 - forearm: 3.5 mm
 - humerus: 4.5 mm (narrow)
 - femur: 4.5 mm (broad)
 - tibia: 4.5 mm (narrow)
- If it doesn't fit, change your plan.

(3.) Internal fixator – and how it's done

- Bridging the fracture
- Respect biology
- Indirect fracture healing

Use: complex distal femur fracture

Bridging the fracture, small incisions, good healing

Abuse: periprosthetic fracture fixed by Femur-LISS

Use self-drilling screws monocortical, place plate correctly, mind stress shielding

Abuse: nonunion following fixation with Tibia-LISS

Avoid open reduction and large gaps

Accident

6 months after fixation

Complex fractures turn into simple nonunions.

2 days after fixation

Abuse: failed fixation in proximal humerus fractures

Avoid primary malalignment (varus), provide medial stability

Jaeger M et al. (2011) Unfallchirurg 114: 1068-1074

(4.) Anatomically adapted to region of interest → opportunity to fix joint surface AND metaphysis

Dorsal comminuted bone

Reduction – and then?

Angular stability helps to retain reduction

Locking Compression Plate

2,4 Radius LCP

Use: Osteoporotic bones may be fixed without secondary loss of reduction

Osteoporotic fractures need angular stability.

AO

Specific plates meeting the needs of different anatomicalregions6 weeks3 months

Principles of fixation using internal and external fixators might be similar, but

- External:
 - flexible configuration
 - minor stability
 - high risk of infection (most superficial)

- Internal:
 - defined configuration
 - high stability
 - low risk of infection

Flexible Fixation and Fracture Healing: Do Locked Plating 'Internal Fixators' Resemble External Fixators?

Hagen Schmal, MD, Peter C. Strohm, MD, Martin Jaeger, MD, and Norbert P. Südkamp, MD

Take home

- Use of LCPs follows the following principles
 - -(1.) and (2.) absolute stability and buttressing
 - Simple fractures need absolute stability.
 - (3.) bridging

Complex fractures need relative stability.

-(4.) combination in osteoporotic fractures:

Osteoporotic fractures need angular stability.

• Principles of fixation using internal and external fixators are similar, but biomechanics and clinical use differs a lot.